An introduction to machine learning

Mehran Karimzadeh

Al vs. ML

What is the difference between artificial intelligence (AI) and machine learning (ML)?

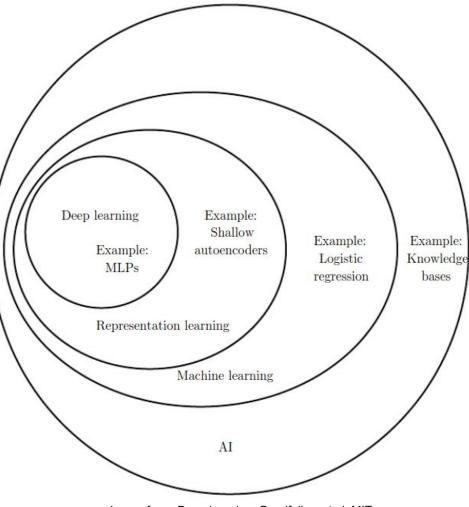


Image from: Deep learning. Goodfellow et al. MIT press.

What is machine learning

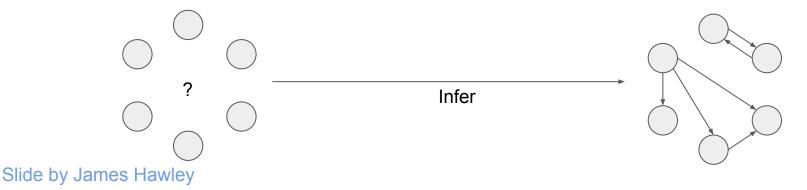
- Statistics and computer science tools to create models for problems of interest
- Learn from available data to create models

Machine learning as a statistical problem

Supervised

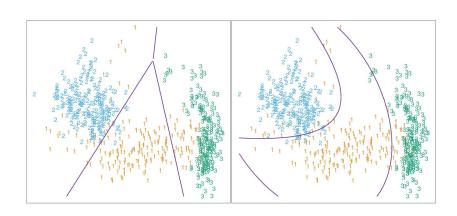
$$Y = f(X; eta) + \epsilon$$
 — Estimate $\hat{Y} = \hat{f}(X; \hat{eta}) + \epsilon$

Unsupervised



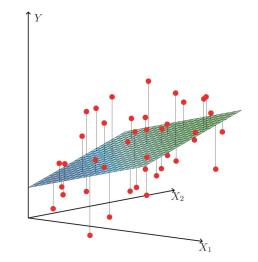
Types of problems

Categorical



Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning, 2009, pg 103.

Continuous



Hastie, Tibshirani, & Friedman. The Elements of Statistical Learning, 2009, pg 45.

Examples of algorithms

	Supervised	Unsupervised
Categorical	Logistic regression Linear discriminant analysis	Nonnegative matrix factorization k-means clustering k-medioids clustering
Continuous	Linear regression Ridge regression Lasso regression Natural cubic splines	Principal component analysis Factor analysis
Both	Support vector machines Neural networks Random forest k-nearest neighbours	Neural networks

Interpretability vs. flexibility



Hastie, Tibshirani, & Friedman. Introduction to Statistical Learning, 2018.

Continuous: Linear regression

$$Y = f(X) + \epsilon$$
 $f(X) = eta_0 + \sum_{i=1}^p eta_i X_i$

Find estimates for $\beta_{0,p}$ to minimize:

$$E[||Y-\hat{Y}||^2]$$

Subject to the following constraint:

 $\sum_{i=1}^p eta_i^2 \leq t$ Ridge $\sum_{i=1}^p |eta_i| \leq t$ Lasso

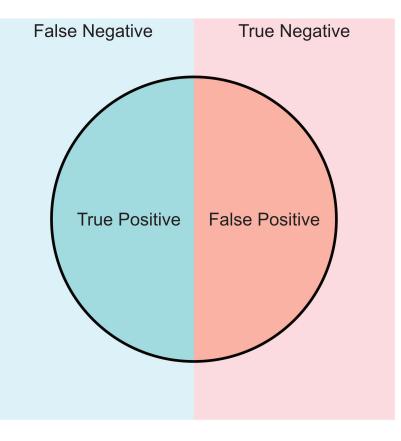
Slide by James Hawley

Assessing models: regression

$$RMSE = \sqrt{E[(Y-\hat{Y})^2]}$$
 $NRMSE = rac{RMSE}{y_{max}-y_{min}}$ $CV = rac{RMSE}{ar{y}}$

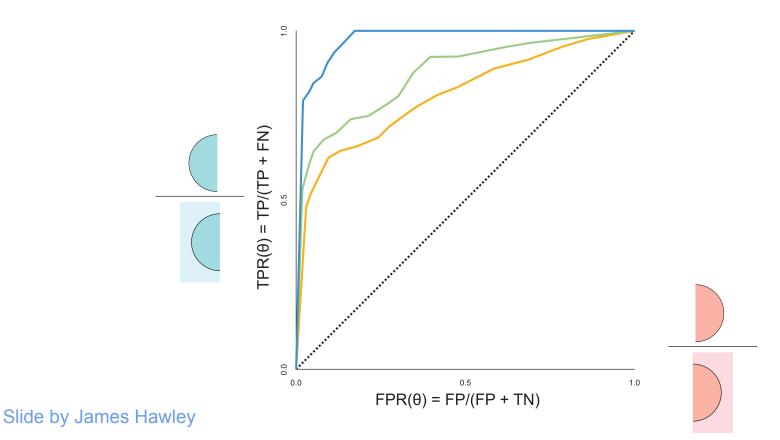
Logistic regression

Assessing models: classifiers

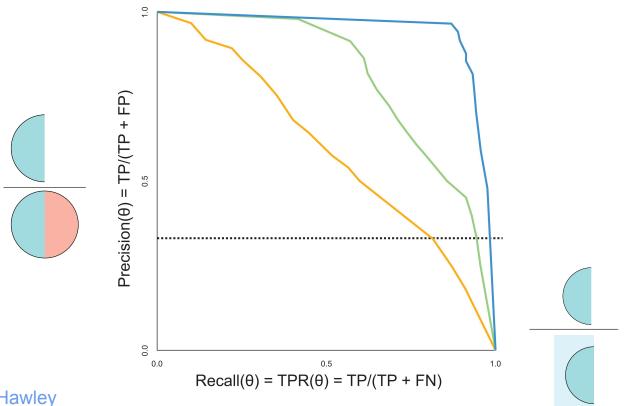


Slide by James Hawley

Assessing models: Receiver-Operator Characteristic

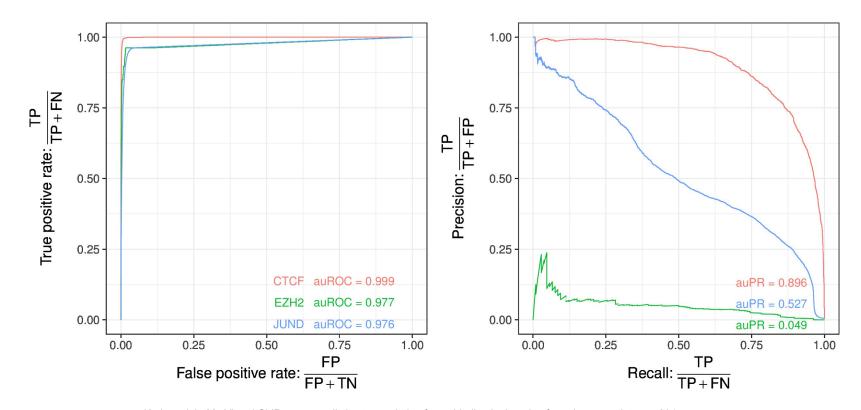


Assessing models: Precision-Recall



Slide by James Hawley

Use more than one metric for assessing performance



Karimzadeh, M., Virtual ChIP-seq – predicting transcription factor binding by learning from the transcriptome, 2017.

Parameter versus Hyperparameter

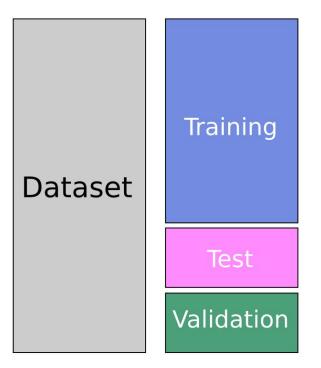
- We identify parameters of a model by optimization methods (e.g. least squares, maximum likelihood, gradient descent methods)
- Hyperparameters are user-defined (e.g. number of trees in random forest, number of clusters in k-means clustering, etc.)

Machine learning: Inference vs. prediction?

- Inference means drawing conclusions about importance and dependency among independent variables from parameters of a model
- The higher the number of parameters, the harder the inference
- A model with higher parameters is generally better at decreasing mean squared error in training data
- Does a model with lower mean squared error always have a better prediction accuracy on unseen data?

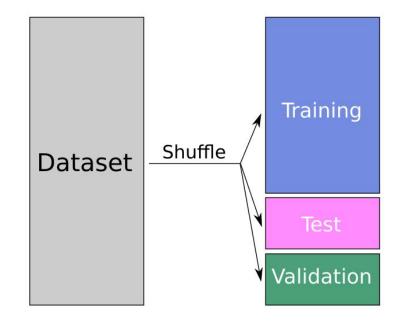
Training, test, and validation sets

- Use the training set for parameter optimization
- Use the test set to evaluate hyperparameters and feature selection
- Use the Validation set for reporting performance



Training, test, and validation sets

• Make sure training, test, and validation sets have similar statistical properties in both dependent and independent variables



Machine learning checklist

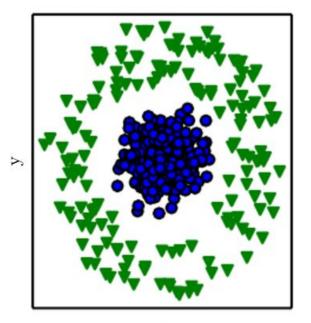
- Divide your dataset into training, test, and validation group
 - Fraction of data doesn't have to be equal, but ensure same properties (e.g. distribution, class imbalance, etc.)
- Hyperparameter == user defined parameter
 - Train with one set of hyperparameters, assess performance on test set, optimize
 - Examples: Grid search or Bayesian optimization
 - For classification problems, threshold is a hyperparameter
 - You can't optimize the threshold on validation group
- Validation dataset must be in a lock box, and cannot be used for:
 - Feature selection
 - Optimizing posterior probability cutoff
- Use multiple metrics with different qualities to assess performance of your model

Neural networks

What is an artificial neural network?

- Instead of $x \rightarrow y, x \rightarrow h_1 \rightarrow h_2 \rightarrow \dots \rightarrow y$
- Hidden layers can have smaller or larger dimensions than *x*
- More parameters to optimize
 - Requiring larger sample size to achieve same training error
 - Easy to overfit; proper design of training, validation, and test data

Why neural networks?



Why neural networks?

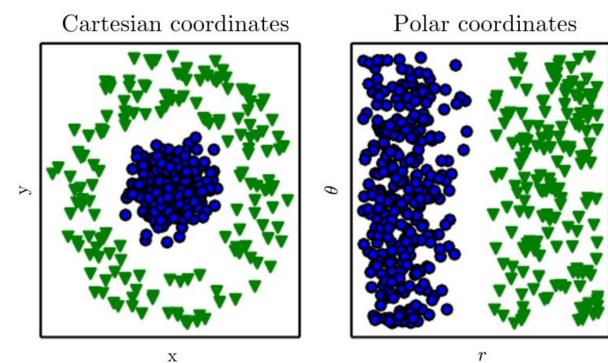


Image from: Deep learning. Goodfellow et al. MIT press.

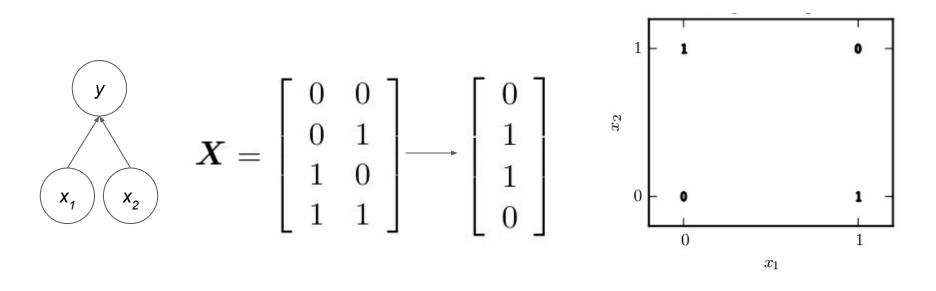
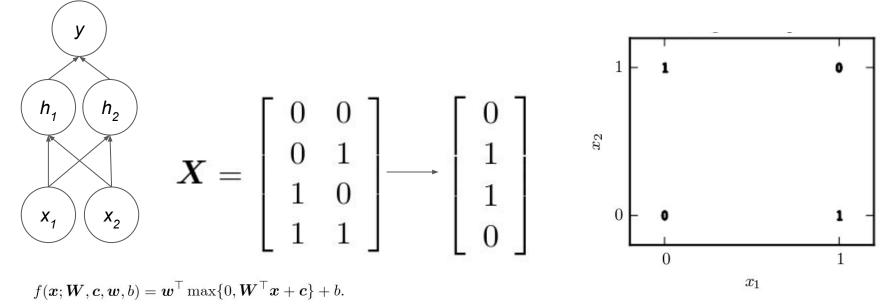
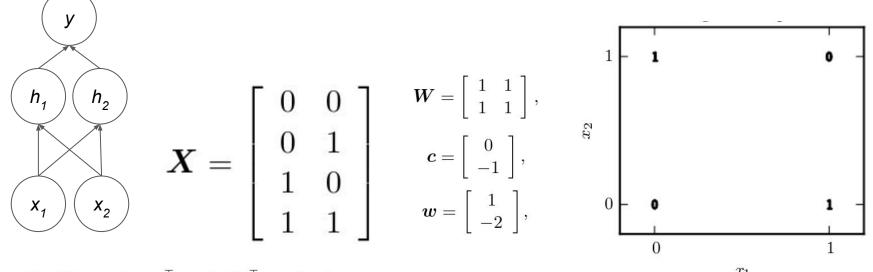


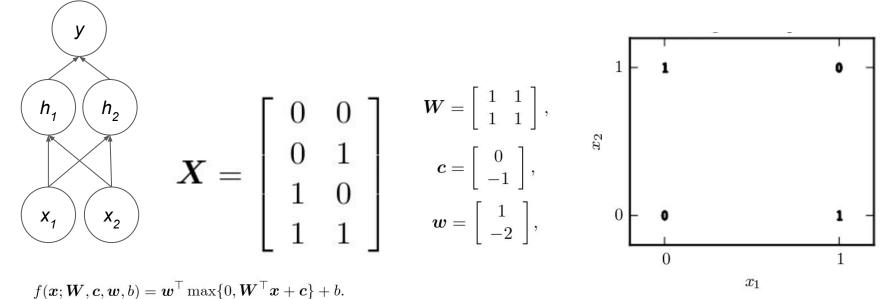
Image from: Deep learning. Goodfellow et al. MIT press.





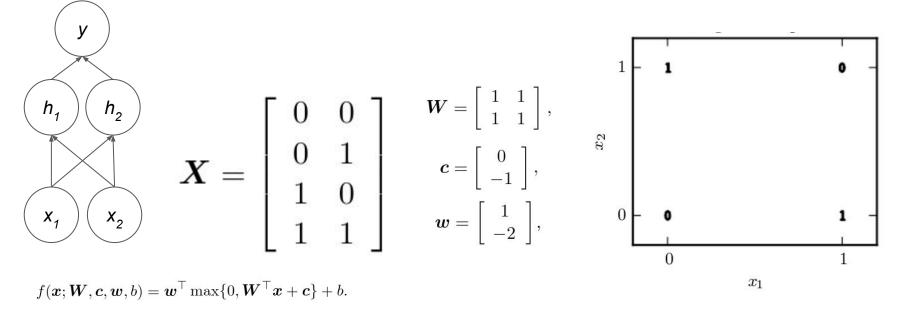
 $f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$

 x_1



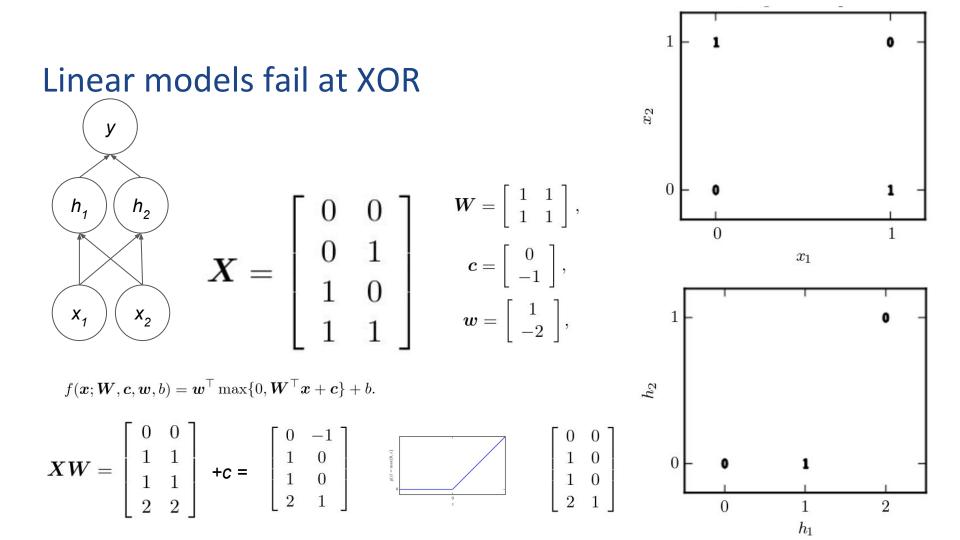
$$\boldsymbol{X}\boldsymbol{W} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Image from: Deep learning. Goodfellow et al. MIT press.



$$\boldsymbol{X}\boldsymbol{W} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} + \boldsymbol{c} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$

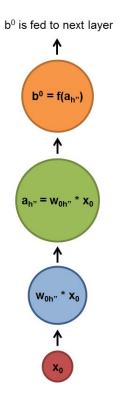
Image from: Deep learning. Goodfellow et al. MIT press.



Different types of neural networks

- Unsupervised
 - Restricted Boltzmann machines
 - No connection among features or hidden units, only between features and hidden units
 - Used for feature representation to supervised algorithms
- Supervised
 - Multi-layer perceptron fully connected
 - Convolutional neural network
 - Recurrent neural network

Recurrent neural networks



Gif from https://deeplearning4j.org/lstm.html

In convolutional neural networks, we apply a kernel (AKA filter) to positionally dependent entries.

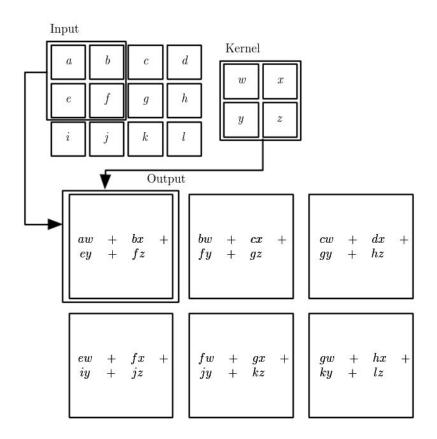
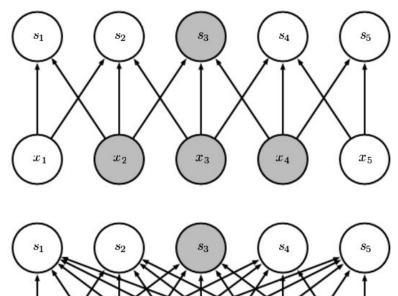
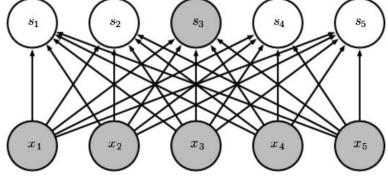


Image from: Deep learning. Goodfellow et al. MIT press.

In convolutional neural networks, we apply a kernel (AKA filter) to positionally dependent entries:

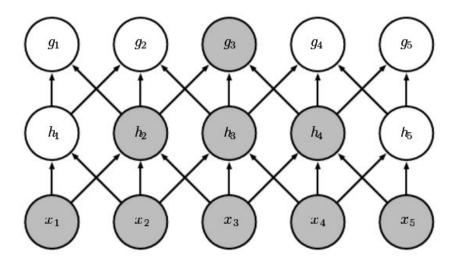
• Reflects position dependency and reduces dimensionality.





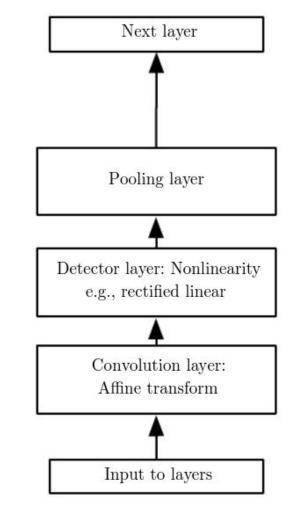
In convolutional neural networks, we apply a kernel (AKA filter) to positionally dependent entries:

- Reflects position dependency and reduces dimensionality.
- Allows for modeling dependence of distant entries with fewer parameters.



In convolutional neural networks, we apply a kernel (AKA filter) to positionally dependent entries:

- Reflects position dependency and reduces dimensionality.
- Allows for modeling dependence of distant entries with fewer parameters.
- Followed by a detection layer and pooling



Example in image recognition

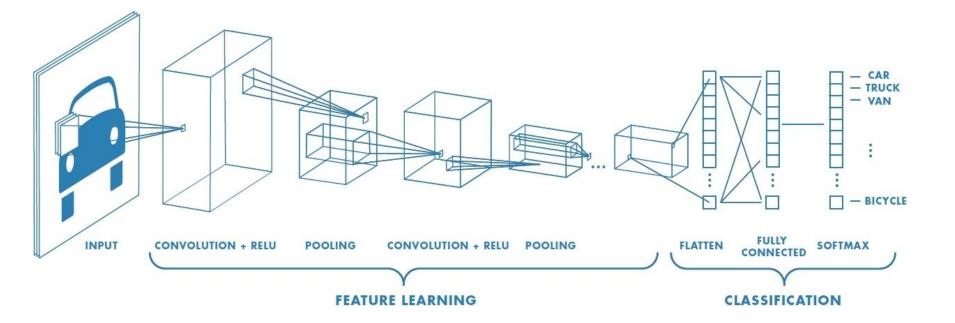
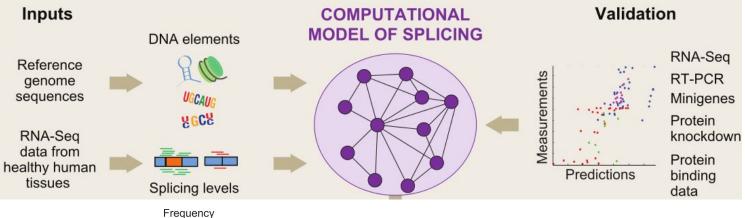
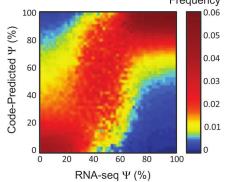


Image from https://www.mathworks.com/discovery/convolutional-neural-network.html

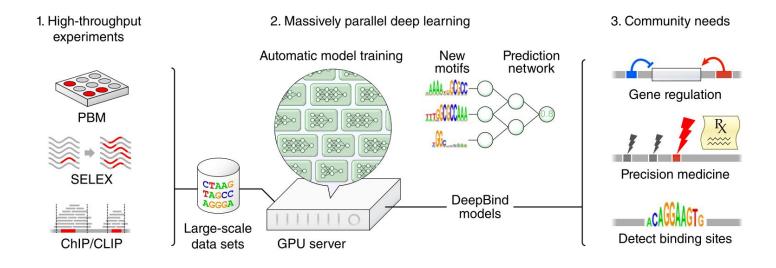
Ensemble of neural networks discovered the splicing code





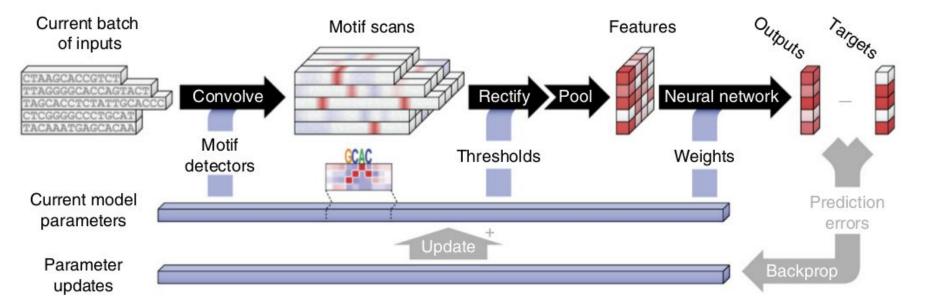
Xiong, Hui Y., et al. "The human splicing code reveals new insights into the genetic determinants of disease." *Science* 347.6218 (2015): 1254806.

Neural networks discovered TF and RBP sequence preference



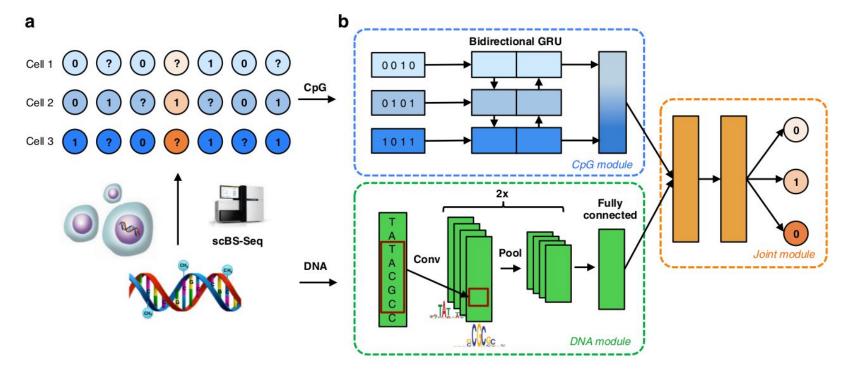
Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." *Nature biotechnology* 33.8 (2015): 831-838.

Neural networks discovered TF and RBP sequence preference



Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." *Nature biotechnology* 33.8 (2015): 831-838.

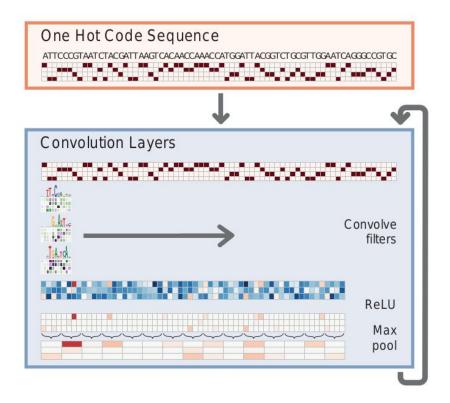
Neural networks discovered single-cell methylation state

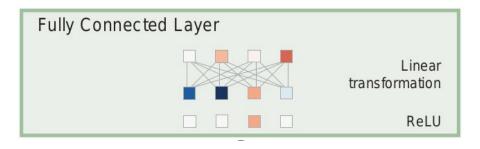


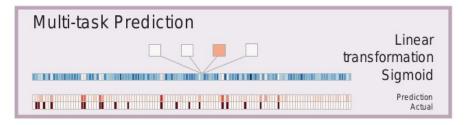
Angermueller, Christof, et al. "DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning." *Genome biology* 18.1 (2017): 67.

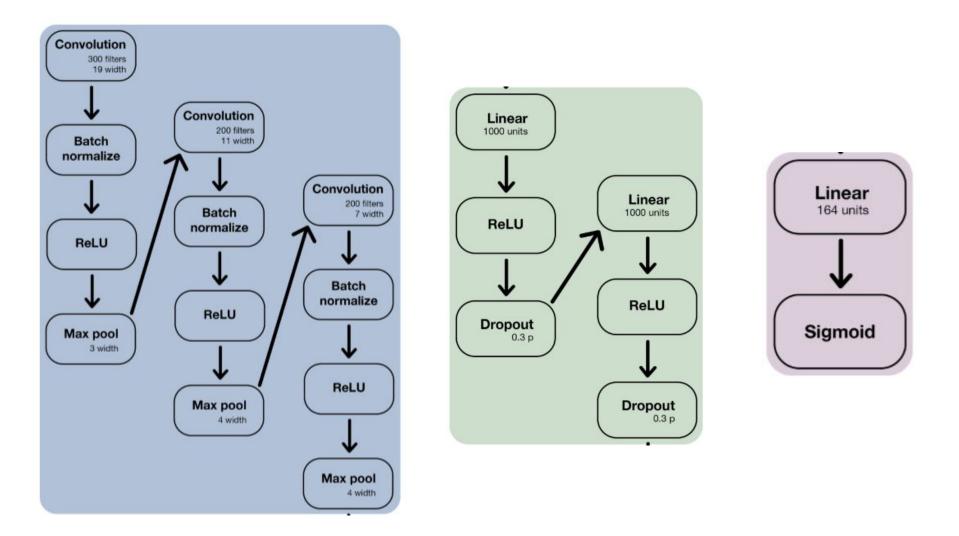
Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks

Kelley, D. R., Snoek, J., & Rinn, J. L.



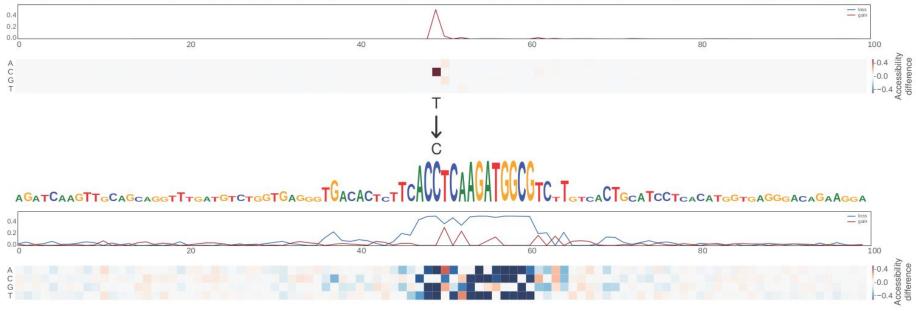






In silico mutation analysis reveals TFBS

AGATCAAGTTGCAGCAGGTTTGATGTCTGGTGAGGGTGACACTCTTCACTTCAAGATGGCGTCTTGTCACTGCATCCTCACATGGTGAGGGACAGAAGGA



5

Questions?