
Logistic Regression
Mehran Karimzadeh

September 11, 2018

1 / 22

Data and packages for these slides:

knitr::opts_chunk$set(echo = FALSE)
required_packages = c("caret", "tree", "randomForest",
"cowplot", "e1071")
install.packages(required_packages)
suppressMessages(require(tidyverse))
suppressMessages(require(cowplot))
mice_df = read_csv("mice.csv")

Parsed with column specification:
cols(
Age = col_double(),
Sex = col_character(),
Condition = col_character(),
Mouse.Genotyping = col_character(),
ID = col_integer(),
Timepoint = col_character(),
Genotype = col_character(),
DaysOfEE = col_integer(),
DaysOfEE0 = col_integer()
)

volume_df = read_csv("volumes.csv") 2 / 22

Logistic regression

3 / 22

Binary variables
Can we predict gender given striatum volume?

mice$amygdala.group = ifelse(mice$amygdala > 10, 1, 0)
ggplot(mice, aes(x=amygdala.group, y=striatum,
 group=amygdala.group)) +
 geom_boxplot() +
 theme_bw(base_size=18)

4 / 22

Linear model for binary variables?
If the independent variable is binary, can we fit the linear model?

ggplot(mice, aes(x=striatum, y=amygdala.group)) +
 geom_point() + xlab("Volume of striatum") +
 ylab("Amygdala group") +
 geom_smooth(method="lm") +
 ggtitle("Amygdala group ~ Striatum volume")

5 / 22

Why we can't use linear model for classi�cation?
Suppose we want to predict seizure, stroke, or overdose given some
measurements from patients
If we model them as 1, 2, and 3 respectively, we are assuming order
Even in case of binary variables, our estimates may exceed range of [0, 1],
making the interpretation unnecessarily hard
Any other reasons that contradict assumptions of the linear model?

6 / 22

Logistic function

logistic_function = function(input, curve_max=1,
 curve_steepness=1, sig_mid=0){
 output = curve_max /
 (1 + exp(-curve_steepness * (input - sig_mid)))
}
input_vals = rnorm(50, sd=3)
out_df = data.frame(
 X=input_vals, Y=logistic_function(input_vals))
ggplot(out_df, aes(x=X, y=Y)) + geom_line()

L

1+e−k∗(x−σ0)

7 / 22

Linear model for binary variables?
Warning: Removed 14 rows containing missing values (geom_smooth).

8 / 22

Solving the logistic model
 + p(X) = β0 βX

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

In linear model, shows how a unit increase in X changes Y

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

β

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

In linear model, shows how a unit increase in X changes Y

The effect size shows how a unit increase in X changes log odds

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

β

β

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

In linear model, shows how a unit increase in X changes Y

The effect size shows how a unit increase in X changes log odds

In linear regression, we used least squared to minimize mean squared
error

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

β

β

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

In linear model, shows how a unit increase in X changes Y

The effect size shows how a unit increase in X changes log odds

In linear regression, we used least squared to minimize mean squared
error

In logistic regression, we use maximum likelihood

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

β

β

9 / 22

Solving the logistic model
 +

 estimating probability with logistic function

 odds

 logit or log of odds

In linear model, shows how a unit increase in X changes Y

The effect size shows how a unit increase in X changes log odds

In linear regression, we used least squared to minimize mean squared
error

In logistic regression, we use maximum likelihood

 Likelihood function

p(X) = β0 βX

p(X) = →1

1+eβ0+βX

= eβ0+βX →
p(X)

1−p(X)

log() = β0 + βX →
p(X)

1−p(X)

β

β

l(β0, β) = Πi:yi=1p(xi)Πi′:yi′=0(1 − p(xi′)) →

9 / 22

K-nearest neighbours
Example of a non-parametric, simple, and powerful machine learning
method

10 / 22

K-NN
Given a positive integer K and a datapoint , identifies K points in
training data which are closest to a datapoint .

x0

x0

11 / 22

K-NN
Given a positive integer K and a datapoint , identifies K points in
training data which are closest to a datapoint .

It then estimates the conditional probability for label of given
responses for its nearest neighbours

x0

x0

x0

K

11 / 22

K-NN
Given a positive integer K and a datapoint , identifies K points in
training data which are closest to a datapoint .

It then estimates the conditional probability for label of given
responses for its nearest neighbours

*Let's implement it in R!

x0

x0

x0

K

11 / 22

K-NN algorithm
Split data to training and test

12 / 22

K-NN algorithm
Split data to training and test

split_ratio = 0.8
idx_train = sample(1:nrow(mice),
 size=floor(nrow(mice) * split_ratio))
train_df = mice[idx_train,]
test_df = mice[-idx_train,]

12 / 22

Predict amygdala size given volume of striatum and midbrain

13 / 22

Predict amygdala size given volume of striatum and midbrain

Finding nearest neighbours

get_neighbours = function(test_data, train_df, K=5){
 print(test_data)
 merged_df = rbind(test_data, train_df)
 dist_df = as.matrix(dist(merged_df))
 distances = as.numeric(dist_df[1,])
 idx_out = order(distances, decreasing=FALSE)[2:(K + 1)]
 return(idx_out)
}

13 / 22

K-NN prediction

predictive_features = c("striatum", "midbrain")
response = "amygdala.group"
test_df$Posterior = NA
for(i in 1:nrow(test_df)){
 idx_neighbours = get_neighbours(
 test_df[i, predictive_features],
 train_df[, predictive_features])
 labels = unlist(train_df[idx_neighbours, response])
 prob = mean(labels)
 test_df$Posterior[i] = prob
}

A tibble: 1 x 2
striatum midbrain
<dbl> <dbl>
1 22.0 13.8
A tibble: 1 x 2
striatum midbrain
<dbl> <dbl>
1 22.3 14.0
A tibble: 1 x 2
striatum midbrain 14 / 22

Calculating threshold-based metrics

confMat$byClass
Sensitivity 0.5338346
Specificity 0.3767123
Pos Pred Value 0.4382716
Neg Pred Value 0.4700855
Precision 0.4382716
Recall 0.5338346
F1 0.4813559
Prevalence 0.4767025
Detection Rate 0.2544803
Detection Prevalence 0.5806452
Balanced Accuracy 0.4552735

print(paste("Accuracy =", signif(confMat$overall["Accuracy"], 3)))

[1] "Accuracy = 0.452"

suppressMessages(require(caret))
suppressMessages(require(e1071))
confMat = confusionMatrix(
 factor(test_df$Posterior > 0.5), factor(test_df$amygdala.group == 1
print(as.data.frame(confMat$byClass))

15 / 22

Plotting performance

train_df$Posterior = NA
train_df$Dataset = "Training"
test_df$Dataset = "Test"
merged_df = rbind(train_df, test_df)
ggplot(merged_df) +
 aes(x=striatum, y=midbrain, colour=Posterior > 0.5) +
 geom_point(alpha=0.5) +
 geom_point(data=test_df, aes(colour=Posterior > 0.5)) +
 theme_bw(base_size=16) +
 facet_grid(factor(amygdala.group)~Dataset)

16 / 22

Plotting performance

train_df$Posterior = NA
train_df$Dataset = "Training"
test_df$Dataset = "Test"
merged_df = rbind(train_df, test_df)
ggplot(merged_df) +
 aes(x=striatum, y=midbrain, colour=Posterior > 0.5) +
 geom_point(alpha=0.5) +
 geom_point(data=test_df, aes(colour=Posterior > 0.5)) +
 theme_bw(base_size=16) +
 facet_grid(factor(amygdala.group)~Dataset)

16 / 22

Random forest, in simple terms
Random forests can regress or classify, and they are made of hundreds of
trees

17 / 22

Random forest, in simple terms
Random forests can regress or classify, and they are made of hundreds of
trees

Each tree uses some of data (samples) and some of the features

17 / 22

Random forest, in simple terms
Random forests can regress or classify, and they are made of hundreds of
trees

Each tree uses some of data (samples) and some of the features

We identify which feature can classify (or regress) the outcome better

17 / 22

Random forest, in simple terms
Random forests can regress or classify, and they are made of hundreds of
trees

Each tree uses some of data (samples) and some of the features

We identify which feature can classify (or regress) the outcome better

We split the data at the point which classifies training data best, and
repeat the last step on each split until all data points are grouped

17 / 22

Random forest, in simple terms
Random forests can regress or classify, and they are made of hundreds of
trees

Each tree uses some of data (samples) and some of the features

We identify which feature can classify (or regress) the outcome better

We split the data at the point which classifies training data best, and
repeat the last step on each split until all data points are grouped

We build hundreds of trees based on training data. When it comes to new
data, we use the majority vote to decide on the response for output
variable

17 / 22

Classi�cation tree

require(tree)

Loading required package: tree

Classification tree:
tree(formula = factor(amygdala.group) ~ . - amygdala, data = train_df)
Variables actually used in tree construction:
[1] "hippocampus"
[2] "Posteromedial.cortical.amygdaloid.area"
[3] "optic.tract"
[4] "pons"
[5] "Secondary.visual.cortex..mediolateral.area"
[6] "Secondary.visual.cortex..lateral.area"

volume_df = read.csv("volumes.csv")
volume_df = volume_df[, !colnames(volume_df) %in% c("ID", "Timepoint"
volume_df$amygdala.group = ifelse(volume_df$amygdala > 10, 1, 0)
train_df = volume_df[idx_train,]
test_df = volume_df[-idx_train,]
tree_model = tree(factor(amygdala.group) ~.-amygdala, train_df)
summary(tree_model)

18 / 22

pred_tree = predict(tree_model, test_df, type="class")
confMat = confusionMatrix(pred_tree, factor(test_df$amygdala.group))
acc_tree = signif(confMat$overall["Accuracy"], 3)
print(paste("Accuracy =", acc_tree))

[1] "Accuracy = 0.839"

plot(tree_model)

19 / 22

Fitting a random forest

suppressMessages(require(randomForest))
rf_model = randomForest(factor(amygdala.group) ~.-amygdala,
 data=train_df, ntree=100, importance=TRUE)
pred_rf = predict(rf_model, newdata=test_df)
confMat = confusionMatrix(pred_rf, factor(test_df$amygdala.group))
acc_rf = signif(confMat$overall["Accuracy"], 3)
print(paste("Accuracy RF =", acc_rf, "and tree =", acc_tree))

[1] "Accuracy RF = 0.892 and tree = 0.839"

20 / 22

Feature importance by random forest
Mean decrease Gini is the sum of Gini impurity of a feature across all
trees.

21 / 22

Feature importance by random forest
Mean decrease Gini is the sum of Gini impurity of a feature across all
trees.

Gini impurity is a measure of how often a randomly chosen element from
the set would be incorrectly labeled

imp_df = as.data.frame(importance(rf_model))
imp_df$Feature = rownames(imp_df)
imp_df = imp_df[order(imp_df$MeanDecreaseGini, decreasing=TRUE)[1:10]
imp_df$Feature = factor(
 imp_df$Feature,
 levels=imp_df$Feature[order(imp_df$MeanDecreaseGini)])

21 / 22

ggplot(imp_df) +
 aes(x=Feature, y=MeanDecreaseGini) +
 geom_bar(stat="identity", fill="purple") +
 coord_flip()

22 / 22

