
Truth and replicability

Day 4

Jason Lerch

1 / 65

Hello World
Today is about truth and replication, multiple comparisons, and effect sizes and
statistical power.

2 / 65

Why most published research findings are
false

3 / 65

The probability that a research finding is true
depends on the prior probability of it being
true
This calls for a digression into Bayes theorem

4 / 65

Meet The Reverend
Reverend Thomas Bayes

5 / 65

Bayes' Theorem
Bayes noticed this useful property for the probabilities for two events "A" and
"B"

: The probability of A given that B happened
: The probability of B given that A happened

: The probability of A

: the probability of B

Bayes did this in the context of the binomial distribution

P(A|B) =
P(B|A)P(A)

P(B)

P(A|B)
P(B|A)
P(A)

P(B)

6 / 65

 disease is present

 disease is absent

 test is positive

 test is negative

sample a random person from the
street, administer the test, it comes up
positive. What is the probability that
this person has the disease?

Bayes' theorem in action
Disease prevalence = 1/1000

diagnostic test: 99% hit rate (i.e. if person has the disease, test will be positive 99%
of the time)

diagnostic test: 5% false positive rate (i.e. if person does not have the disease, test
will be positive 5% of the time)

θ = 1

θ = 0

T = +

T = −

7 / 65

 disease is present

 disease is absent

 test is positive

 test is negative

sample a random person from the
street, administer the test, it comes up
positive. What is the probability that
this person has the disease?

Bayes' theorem in action
Disease prevalence = 1/1000

diagnostic test: 99% hit rate (i.e. if person has the disease, test will be positive 99%
of the time)

diagnostic test: 5% false positive rate (i.e. if person does not have the disease, test
will be positive 5% of the time)

p(θ = 1) = 0.001

p(θ = 0) = 0.999

T = +

T = −

8 / 65

 disease is present

 disease is absent

 test is positive

 test is negative

sample a random person from the
street, administer the test, it comes up
positive. What is the probability that
this person has the disease?

Bayes' theorem in action

p(θ = 1) = 0.001

p(θ = 0) = 0.999

T = +

T = −

9 / 65

Bayes' theorem in action

P(A|B) =
P(B|A)P(A)

P(B)

P(θ = 1|T = +) =
P(T = +|θ = 1)P(θ = 1)

∑θ P(T = +|θ)p(θ)

P(θ = 1|T = +) = = 0.019
0.99 × 0.001

0.99 × 0.001 + 0.05 × (1 − 0.001)

10 / 65

Bayes' theorem in action
Disease prevalence = 1/1000

diagnostic test: 99% hit rate (i.e. if person has the disease, test will be positive 99%
of the time)

diagnostic test: 5% false positive rate (i.e. if person does not have the disease, test
will be positive 5% of the time)

P(A|B) =
P(B|A)P(A)

P(B)

P(θ = 1|T = +) =
P(T = +|θ = 1)P(θ = 1)

∑θ P(T = +|θ)p(θ)

P(θ = 1|T = +) = = 0.019
0.99 × 0.001

0.99 × 0.001 + 0.05 × (1 − 0.001)

11 / 65

The probability that a research finding is true depends
on the prior probability of it being true

R = ratio of the number of "true relationships" to "no relationships" among those
tested in the field.

 = pre-study probability of a relationship being true

 = probability of a study finding a true relationship (power)

 = probability of claiming a true relationship where none exists (p-value)

R/ (R + 1)

1 − β

α

12 / 65

Statistical power via simulations
simFakeData <- function(intercept=100, # what happens at age 20 in G1 M
 sex_at_20=3, # how F differs from M at age 20
 G2_at_20=0, # how G2 differs from G1 at age 20
 G3_at_20=0, # how G3 differs from G1 at age 20
 delta_year=0.5,# change per y for G1 M
 sex_year=0, # additional change per y For F
 G2_year=0, # additional change per y for G2
 G3_year=0, # additional change per y for G3
 noise=2, # Gaussian noise
 n_per_group = 40) { # subjects/each of the 3 groups
 age <- runif(n_per_group*3, min=20, max=80) # randomly select ages
 group <- c(# create the group labels
 rep("G1", n_per_group),
 rep("G2", n_per_group),
 rep("G3", n_per_group)) # next line: half of each group is male
 sex <- c(rep(rep(c("M", "F"), each=ceiling(n_per_group/2)), 3))

 outcome <- intercept +
 ifelse(sex == "F", sex_at_20, 0) +
 ifelse(group == "G2", G2_at_20, 0) +
 ifelse(group == "G3", G3_at_20, 0) +
 (age-20)*delta_year +
 ifelse(sex == "F", (age-20)*sex_year, 0) +
 ifelse(group == "G2", (age-20)*G2_year, 0) +
 ifelse(group == "G3", (age-20)*G3_year, 0) +
 rnorm(length(age), mean=0, sd=noise)
 return(data.frame(age, sex, group, outcome))
} 13 / 65

Simple group comparison: sex
library(ggplot2)
library(broom)
suppressMessages(library(tidyverse))

fake <- simFakeData(sex_at_20 = 3, delta_year = 0)

lm(outcome ~ sex, fake) %>% tidy

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 103. 0.279 368. 1.95e-182
2 sexM -2.73 0.395 -6.90 2.73e- 10

14 / 65

Simple group comparison, sex
ggplot(fake) + aes(sex, outcome) +
 geom_boxplot()

15 / 65

Now assume no group di!erence
fake <- simFakeData(sex_at_20 = 0, delta_year = 0)
ggplot(fake) + aes(sex, outcome) +
 geom_boxplot()

16 / 65

Keep the output
tidy(lm(outcome ~ sex, fake))$p.value[2]

[1] 0.3635324

17 / 65

And repeat for multiple simulations
nsims <- 1000
pvals <- vector(length=nsims) # keep the p values
for (i in 1:nsims) {
 # for every simulation, compute the linear model and keep p value
 pvals[i] <- tidy(lm(outcome ~ sex,
 simFakeData(sex_at_20 = 0, delta_year = 0)))$p.value[2]
}

What number of those p values will be < 0.05?

18 / 65

Alpha level - Type I error rate
sum(pvals < 0.05)

[1] 47

qplot(pvals, breaks=seq(0.0, 0.95, by=0.05))

19 / 65

Statistical power
 or p-value threshold are only dependent on null hypothesis

Statistical power - ability to detect true differences - are additionally dependent
on:

effect size

sample size

noise/variance

α

20 / 65

Statistical power - e!ect size
Keep everything but effect size constant

effects <- seq(0, 2, by=0.2)
rejections <- effects

nsims <- 500

for (i in 1:length(effects)) {
 pvals <- vector(length=nsims) # keep the p values
 for (j in 1:nsims) {
 # for every simulation, compute the linear model and keep p value
 pvals[j] <- tidy(lm(outcome ~ sex,
 simFakeData(sex_at_20 = effects[i], # vary effect
 noise=2, # keep noise constant
 n_per_group = 40, # keep n constant
 delta_year = 0)))$p.value[2]
 }
 rejections[i] <- mean(pvals < 0.05) # keep alpha at 0.05
}

21 / 65

Statistical power - e!ect size
qplot(effects, rejections, geom=c("point", "line"))

22 / 65

Statistical power - noise
Keep everything but noise constant

noise <- seq(0.1, 3, by=0.3)
rejections <- noise

nsims <- 500

for (i in 1:length(noise)) {
 pvals <- vector(length=nsims) # keep the p values
 for (j in 1:nsims) {
 # for every simulation, compute the linear model and keep p value
 pvals[j] <- tidy(lm(outcome ~ sex,
 simFakeData(sex_at_20 = 0.5, # effect constant
 noise=noise[i], # keep noise constant
 n_per_group = 40, # keep n constant
 delta_year = 0)))$p.value[2]
 }
 rejections[i] <- mean(pvals < 0.05) # keep alpha at 0.05
}

23 / 65

Statistical power - noise
qplot(noise, rejections, geom=c("point", "line"))

24 / 65

Statistical power - group size
Keep everything but noise constant

npg <- seq(4, 100, by=8)
rejections <- npg

nsims <- 500

for (i in 1:length(npg)) {
 pvals <- vector(length=nsims) # keep the p values
 for (j in 1:nsims) {
 # for every simulation, compute the linear model and keep p value
 pvals[j] <- tidy(lm(outcome ~ sex,
 simFakeData(sex_at_20 = 0.5, # effect constant
 noise = 2, # keep noise constant
 n_per_group = npg[i], # keep n constant
 delta_year = 0)))$p.value[2]
 }
 rejections[i] <- mean(pvals < 0.05) # keep alpha at 0.05
}

25 / 65

Statistical power - group size
qplot(npg, rejections, geom=c("point", "line"))

26 / 65

Back to Ionnidis

R = ratio of the number of "true relationships" to "no relationships" among those
tested in the field.

 = pre-study probability of a relationship being true

 = probability of a study finding a true relationship (power)

 = probability of claiming a true relationship where none exists (p-value)

R/ (R + 1)

1 − β

α

P(TR = Y |RF = Y) =
P(RF = Y |TR = Y)P(TR = Y)
∑TR P(RF = Y |TR = Y)P(TR)

27 / 65

Back to Ionnidis

R = ratio of the number of "true relationships" to "no relationships" among those
tested in the field.

 = pre-study probability of a relationship being true

 = probability of a study finding a true relationship (power)

 = probability of claiming a true relationship where none exists (p-value)

R/ (R + 1)

1 − β

α

PPV =
1 − β × R

R − βR + α

28 / 65

Back to Ionnidis
Best possible scenario: all investigated findings are real, studies are perfectly
powered, and alpha is the conventional 0.05

beta=0
alpha=0.05
R=1

(PPV <- ((1-beta)*R) / (R - (beta*R) + alpha))

[1] 0.952381

The positive predictive value is thus exactly related to , your significance
threshold.

α

29 / 65

Back to Ionnidis
Only slightly more realistic: all investigated findings are real, studies are powered
at the conventional power of 0.8, and alpha is the conventional 0.05

beta=0.2
alpha=0.05
R=1

(PPV <- ((1-beta)*R) / (R - (beta*R) + alpha))

[1] 0.9411765

The positive predictive value is still very close to , your significance threshold.α

30 / 65

Back to Ionnidis
More realistic: half of investigated findings are real, studies are powered at the
conventional power of 0.8, and alpha is the conventional 0.05

beta=0.2
alpha=0.05
R=0.5

(PPV <- ((1-beta)*R) / (R - (beta*R) + alpha))

[1] 0.8888889

The positive predictive value is moving away from , your significance threshold.α

31 / 65

Back to Ionnidis
Let's vary R to see what happens

beta=0.2
alpha=0.05
R=seq(0, 1, by=0.05)

PPV=R
PPV <- ((1-beta)*R) / (R - (beta*R) + alpha)

qplot(R, PPV, geom=c("point", "line"))

32 / 65

Review
Bayes' theorem combines the likelihood (your model) with prior information to determine truth.

Without the prior you have no way of ascertaining the probability of an event being true

Instead, you can only comment on how (un)likely an event is under the null hypothesis

In the context of disease and diagnostic tests, the prior is the prevalence

In the context of understanding truth and p values, the prior is the ratio of true hypotheses over all
hypotheses tested.

Also important are Type I and Type II error control - False Positives and False Negatives

Statistical power depends on effect size, sample size, and variance

p value corresponds to the hypothesis being true only under the scenario of perfectly powered studies and all
hypotheses being tested being true

p value remains close to the probability of the hypothesis being true if power is high and if a decent
proportion of hypotheses being tested being true.

And assumes no bias

33 / 65

Bias

 = proportion of probed analyses that would not have been "research findings"
but nevertheless end up reported as such
u

34 / 65

Bias
Different from a statistical error due to chance in a correctly designed and
executed experiment

beta=0.2
alpha=0.05
R=0.5
u=0.1

(PPV <- (((1-beta)*R) + (u*beta*R)) /
 ((R + alpha - (beta*R) + u - (u*alpha) + (u*beta*R))))

[1] 0.7387387

PPV =
(1 − β)R + uβR

R + α − βR + u − uα + uβR

35 / 65

Bias
beta=0.2
alpha=0.05
R=seq(0.1, 1, by=0.1)
u=c(0.1, 0.2, 0.5, 0.8)

Rbyu <- expand.grid(R=R, u=u)
R <- Rbyu$R; u <- Rbyu$u

PPV <- (((1-beta)*R) + (u*beta*R)) /
 ((R + alpha - (beta*R) + u - (u*alpha) + (u*beta*R)))

Rbyu <- Rbyu %>% mutate(PPV=PPV, u=as.factor(u))
qplot(R, PPV, colour=u, data=Rbyu, geom=c("point", "line"))

36 / 65

Origins of bias
Mostly related to some variant of the multiple comparisons problem.

Let's explore

37 / 65

Same null data, more complicated model
tidy(lm(outcome ~ sex + group,
 simFakeData(sex_at_20 = 0, delta_year = 0)))

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 101. 0.372 270. 2.91e-164
2 sexM -0.485 0.372 -1.30 1.95e- 1
3 groupG2 -0.101 0.455 -0.222 8.25e- 1
4 groupG3 -0.179 0.455 -0.393 6.95e- 1

38 / 65

And repeat for multiple simulations
nsims <- 1000
3 tests (M vs F, G2 vs G1, G3 vs G1), so 3 outputs
pvals <- matrix(nrow=nsims, ncol=3)
for (i in 1:nsims) {
 # at each simulation, save all 3 p values. Ignore intercept
 pvals[i,] <- tidy(lm(outcome ~ sex + group,
 simFakeData(sex_at_20 = 0, delta_year = 0)))$p.value[-1]
}

In how many of the simulations will any one of the p-values be less than 0.05?

39 / 65

Multiple comparisons
Across the simulation results, check in how many simulations any one (or more)
of the 3 p values that were kept was less than 0.05.

sum(apply(pvals, 1, function(x)any(x < 0.05)))

[1] 125

qplot(apply(pvals, 1, min), breaks=seq(0, 0.95, by=0.05))

40 / 65

Dealing with Many Tests
If you're testing a lot of hypotheses, a 5% chance of making a mistake adds up

After 14 tests you have a better than a 50/50 chance of having made at least
one mistake

How do we control for this?

Two main approaches Family-Wise Error Rate (FWER) control and False-
Discovery Rate (FDR) control.

41 / 65

FWER
In family-wise error rate control, we try to limit the chance we will at least
one type I error.

Best known example: Bonferroni correction. Divide your significance
threshold by the number of comparisons, i.e. with two comparisons p<0.05
becomes p<0.025.

Quite conservative, so in neuroimaging and genetics we tend to use False
Discovery Rate control.

42 / 65

FDR
Instead of trying to control our chances of making at least one mistake, let's
try to control the fraction of mistakes we make.

To do this we employ the Benjamini-Hochberg procedure.

The Benjamini-Hochberg procedure turns our p-values in q-values. Rejecting
all q-values below some threshold controls the expected number of mistakes.

For example if we reject all hypotheses with q < 0.05, we expect about 5% of
our results to be false discoveries (type I errors).

If we have 100's or more tests we can accept a few mistakes in the interest of
finding the important results.

43 / 65

Back to simulations
Let's simulate an increasing effect

nsims <- 500
sexeffect <- seq(0, 2.5, by=0.25)
pvals <- matrix(nrow=nsims, ncol=length(sexeffect))
effects <- matrix(nrow=nsims, ncol=length(sexeffect))
for (i in 1:nsims) {
 for (j in 1:length(sexeffect)) {
 fake <- simFakeData(sex_at_20 = sexeffect[j], delta_year = 0)
 l <- lm(outcome ~ sex, fake)
 pvals[i,j] <- tidy(l)$p.value[2]
 effects[i,j] <- tidy(l)$estimate[2]
 }
}

44 / 65

E!ect size and e!ect found
esteffect <- vector(length=length(sexeffect))
for (i in 1:length(sexeffect)) {
 esteffect[i] <- mean(effects[pvals[,i] < 0.05,i])
}

cbind(sexeffect, esteffect)

sexeffect esteffect
[1,] 0.00 -0.07608879
[2,] 0.25 -0.69814569
[3,] 0.50 -0.95420156
[4,] 0.75 -1.03611547
[5,] 1.00 -1.13789376
[6,] 1.25 -1.30348091
[7,] 1.50 -1.49446113
[8,] 1.75 -1.74677972
[9,] 2.00 -2.00535883
[10,] 2.25 -2.24999782
[11,] 2.50 -2.49418902

45 / 65

p hacking
nsims <- 1000
pvals <- matrix(nrow=nsims, ncol=4)
for (i in 1:nsims) {
 fake <- simFakeData(sex_at_20 = 0.5, delta_year = 0)
 pvals[i,1] <- tidy(lm(outcome ~ sex, fake))$p.value[2]
 pvals[i,2] <- tidy(lm(outcome ~ sex, fake %>%
 filter(group == "G1")))$p.value[2]
 pvals[i,3] <- tidy(lm(outcome ~ sex, fake %>%
 filter(group == "G2")))$p.value[2]
 pvals[i,4] <- tidy(lm(outcome ~ sex, fake %>%
 filter(group == "G3")))$p.value[2]

}

46 / 65

p hacking
colMeans(pvals < 0.05)

[1] 0.285 0.105 0.126 0.110

sum(apply(pvals, 1, function(x)any(x < 0.05)))

[1] 398

qplot(apply(pvals, 1, min), breaks=seq(0, 0.95, by=0.05))

47 / 65

Let's review the papers

48 / 65

Evaluating binary classification
In linear regression, we may use measures such as , AIC, or BIC to select the
best model.

In any type of statistical inference and learning, it's best to assess model
performance on held-out data

In logistic regression, however, we have a continuous prediction (posterior
probability) and a binary class label

Why can't we just pick one cutoff, such as 0.5, and report the performance of
the model only based on that cutoff?

The optimal performance for model A may happen at cutoff of 0.6, but
the optimal performance of model B may occur at another cutoff.

R2

∈ [0, 1]

49 / 65

Threshold-independent evaluation of a logistic
regression model

Instead of assessing the performance of the model in just one threshold, we
iterate through all possible values of the posterior probability, and keep track
of:

True positive rate or sensitivity:

True negative rate or specificity or precision:

Precision or positive predictive value:

TruePrediction FalsePrediction
True TP FP
False TN FN

correct true predictions
all true samples

correct false predictions
all false samples

correct true predictions
all positive predictions

50 / 65

Reload the data

require(PRROC)

Loading required package: PRROC

mice_df = read_csv("mice.csv")

Parsed with column specification:
cols(
Age = col_double(),
Sex = col_character(),
Condition = col_character(),
Mouse.Genotyping = col_character(),
ID = col_double(),
Timepoint = col_character(),
Genotype = col_character(),
DaysOfEE = col_double(),
DaysOfEE0 = col_double()
)

volume_df = read_csv("volumes.csv")

Parsed with column specification: 51 / 65

The ROC plot

roc = roc.curve(
 scores.class0=pred_df$Posterior[pred_df$amygdala.group==1],
 scores.class1=pred_df$Posterior[pred_df$amygdala.group==0],
 curve=TRUE)
plot(roc)

52 / 65

The PR plot

require(PRROC)
pr = pr.curve(
 scores.class0=pred_df$Posterior[pred_df$amygdala.group==1],
 scores.class1=pred_df$Posterior[pred_df$amygdala.group==0],
 curve=TRUE)
plot(pr)

53 / 65

Threshold-based metrics
If we decide on a particular cutoff, how can we report the performance?

TruePrediction FalsePrediction
True TP FP
False TN FN

There are several measures commonly used:

accuracy:

 score:

Matthews correlation coefficient:

TP+TN

TP+TN+FP+FN

F1 2 times
precision×recall
precision+recall

(TP×TN)−(FP×FN)

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)

54 / 65

Class imbalance can bias most metrics

auPR and MCC are better metrics for imbalanced datasets

55 / 65

Non-parametric statistical learning
Many models in statistical and machine learning do not model the
distribution of the dependent variables.

These models can be powerful in learning certain patterns:

A parametric model, however, has more statistical power compared to a
non-parametric model

Example of non-parametric statistical learning algorithms:

Mann-Whitney U test

K-nearest neigbbours

Classification trees and forests

Artificial neural networks

56 / 65

The most important concept in machine
learning

Ideally, divide your datasets in three groups:

Training set: The model will only be trained on this data

Tuning set (aka test set): Trained model will be tested on this data for the
purpose of optimizing the user-defined parameters (aka
hyperparameters)

Validation set: A held-out set you put in a lock box and only use when
evaluating the completely trained model. You never make changes to
your trained model based on the performance on the validation set.

All of your data, including training, tuning, and validation set, should be free
of potential batch effects

What are potential batch effects that could be caused by data splitting?

57 / 65

K-nearest neighbours
Example of a non-parametric, simple, and powerful machine learning method

58 / 65

K-NN
Given a positive integer K and a datapoint , identifies K points in training
data which are closest to a datapoint .

It then estimates the conditional probability for label of given responses for
its nearest neighbours

Let's implement it in R!

x0
x0

x0
K

59 / 65

K-NN algorithm
Split data to training and test

split_ratio = 0.8
idx_train = sample(1:nrow(mice),
 size=floor(nrow(mice) * split_ratio))
train_df = mice[idx_train,]
test_df = mice[-idx_train,]

60 / 65

Predict amygdala size given volume of striatum and midbrain

Finding nearest neighbours

get_neighbours = function(test_data, train_df, K=5){
 merged_df = rbind(test_data, train_df)
 dist_df = as.matrix(dist(merged_df, method="euclidean"))
 distances = as.numeric(dist_df[1,])
 idx_out = order(distances, decreasing=FALSE)[2:(K + 1)]
 ## Deduct 1 so the indices map to train_df instead of merged_df
 idx_out = idx_out - 1
 return(idx_out)
}

61 / 65

K-NN prediction
predictive_features = c("striatum", "midbrain")
response = "amygdala.group"
test_df$Posterior = NA
for(i in 1:nrow(test_df)){
 idx_neighbours = get_neighbours(
 test_df[i, predictive_features],
 train_df[, predictive_features])
 labels = unlist(train_df[idx_neighbours, response])
 prob = mean(labels)
 test_df$Posterior[i] = prob
}

62 / 65

Calculating threshold-based metrics
suppressMessages(require(caret))
suppressMessages(require(e1071))
confMat = confusionMatrix(
 factor(test_df$Posterior > 0.5), factor(test_df$amygdala.group == 1))
print(as.data.frame(confMat$byClass))

confMat$byClass
Sensitivity 0.7785714
Specificity 0.7913669
Pos Pred Value 0.7898551
Neg Pred Value 0.7801418
Precision 0.7898551
Recall 0.7785714
F1 0.7841727
Prevalence 0.5017921
Detection Rate 0.3906810
Detection Prevalence 0.4946237
Balanced Accuracy 0.7849692

print(paste("Accuracy =", signif(confMat$overall["Accuracy"], 3)))

[1] "Accuracy = 0.785" 63 / 65

Plotting performance
train_df$Posterior = NA
train_df$Dataset = "Training"
test_df$Dataset = "Test"
merged_df = rbind(train_df, test_df)
ggplot(merged_df) +
 aes(x=striatum, y=midbrain, colour=Posterior > 0.5) +
 geom_point(alpha=0.5) +
 geom_point(data=test_df, aes(colour=Posterior > 0.5)) +
 theme_bw(base_size=16) +
 facet_grid(factor(amygdala.group)~Dataset)

64 / 65

Assignment
We are moving away from the mice dataset we've worked with so far and towards a hypothetical clinical trial. You
are placed in the role of the lead statisticians for the trial. Before the trial starts your role is to come up with an
analysis plan.

Some information about the trial. The plan is to have three groups: placebo, standard of care, and standard of care
plus the new therapeutic. The outcome is tumour volume. The plan is for the trial to run for 6 months, with
assessments of tumour volume at baseline and at trial completion.

Past studies have shown that, at entry into the trial, tumour volume is around with a standard deviation
of 5 . Untreated, tumours will grow by 23 per year (with a standard deviation of 12). With
standard of care treatment tumours are expected to only grow by (with a standard deviation of
).

For this assignment: (1) describe your proposed analysis plan with sufficient detail that anyone could run your
modelcla. Model both tumour volume and a binary output of improved or not improved based on tumour volume
(with less than 5 tumour growth as the criteria for improved) (2) Use simulations to determine the number
of subjects that would be needed to detect different levels of efficacy of the new treatment against placebo, (2) or
against standard of care therapy. Use both continuous volume and the binary label of improved and not improved
for 2 and 3.

45 mm3

mm3 mm3 mm3

15 mm3 12 mm3

mm3

65 / 65

